

0

Review Session I: Exploring Data

Notes from AP Test Prep Series: AP Statistics by Pearson Education

Graphical Displays

- First step: Answer the W's
 - Who?
 - What?
 - Categorical?
 - Numbers that don't make sense to average
 - Zip codes
 - Jersey numbers
 - Data that can be counted and put in order but not measured
 - Horse-race finishes
 - Team standings
 - Quantitative?

Graphical Displays

- First step: Answer the W's
 - When?
 - Where?
 - How?
 - Why?

Frequency Distribution Table

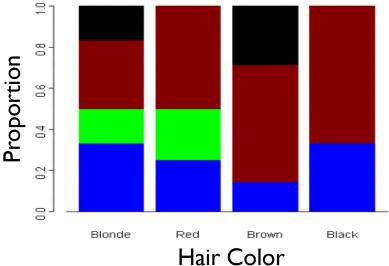
Table III Frequency Distribution of Average Reading Scores Tabulated to Nearest Grade Level

Score Interval	Grade Level*	f	
10.5–11.4	11	2	
9.5–10.4	10	6	
8.5–9.4	9	14	
7.5–8.4	8	22	
6.5-7.4	7	19	
5.5-6.4	6	12	
4.5-5.4	5	10	
3.5-4.4	4	3_	
	N =	88	
*Midpoint of class interv	al.		

http://cache.eb.com/eb/image?id=74903&rendTypeId=4

Frequency Distribution Table

- Rules:
 - All classes must be included, even if the frequency of some classes is zero
 - All classes should have the same width. The class intervals should be equal.


http://cache.eb.com/eb/image?id=74903&rendTypeId=4

Data Analysis Info

- Make a picture, make a picture, <u>make a</u> <u>picture</u>!
- One Variable, Categorical Data
 - Do a bar chart or pie chart
 - Bar charts have spaces between each category
 - Order of the category is not important
 - Show either counts or proportions
 - LABEL APPROPRIATELY
 - Describe the chart in the CONTEXT of the data
 - DO NOT describe the shape of a categorical variable

Data Analysis Info

- Make a picture, make a picture, <u>make a</u>
 <u>picture</u>!
- Two-Variable, Categorical Data
 - Do a segmented bar graph
 - Describe in CONTEXT the relationship between the two variables

Data Analysis Info

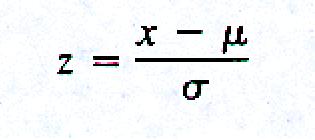
- Make a picture, make a picture, <u>make a</u> <u>picture</u>!
- One Variable, Quantitative Data
 - Histogram, Ogive, Stem-and-Leaf, Dotplot, Boxplot
 - Histograms do not have spaces between the bars, UNLESS there is no data in that interval
 - Describe the shape, center and spread of the distribution in the CONTEXT of the data
 - When working with two data sets, be sure to make comparisons between the two using the same scale

Numerical Descriptions

- Five-Number Summary
 - Minimum, QI, Median, Q3, Maximum
 - $\circ IQR = Q3 QI$
 - Show a boxplot
 - Stat Calc I Var Stats
 - 2nd StatPlot Modified Boxplot

Numerical Descriptions

- Measures of Center
 - Mean (not resistant to outliers)
 - Median (resistant to outliers)
 - Don't forget weighted means
 - For example, suppose your school reports grades quarterly and you take midterm and final exams. If your grades for each quarter count 20% and the midterm and final exams each count 10%, calculate your final average for the following grades:


l st Q	2 nd Q	Mid	3 rd Q	4 th Q	Final E
85	80	82	78	74	71

Numerical Descriptions

- Measures of Spread
 - Standards Deviation (not resistant to outliers)
 - Interquartile Range (resistant to outliers)
 - Range

Comparing Data

- When the data sets have different means and standard deviations,
 - Z-scores

Scaling/Shifting Data

- Adding/subtracting to/from each value
 - Adds or subracts the same constant from the mean
 - Measures of spread (standard deviation, range, IQR) remain unchanged
- Multiplying/dividing all the data values
 - Measures of center and spread are affected

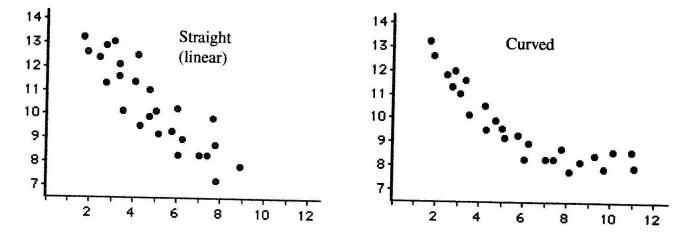
Normal Models

- Appropriate for distributions whose shapes are unimodal and roughly symmetric
- N(μ, σ)
- 68-95-99.7% (Empirical) Rule

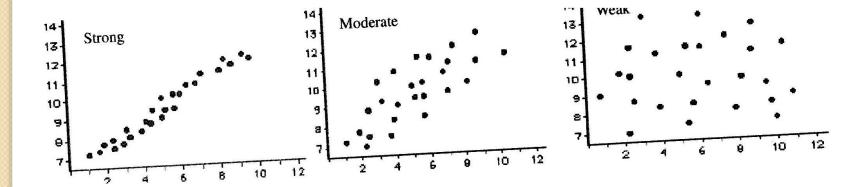
Session 2

0

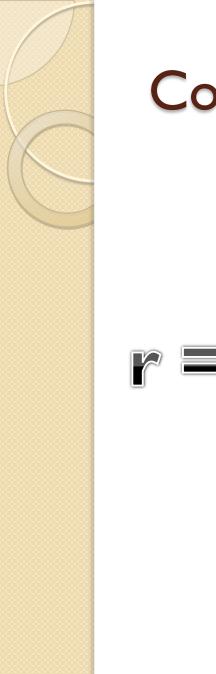

EXPLORING RELATIONSHIPS BETWEEN VARIABLES

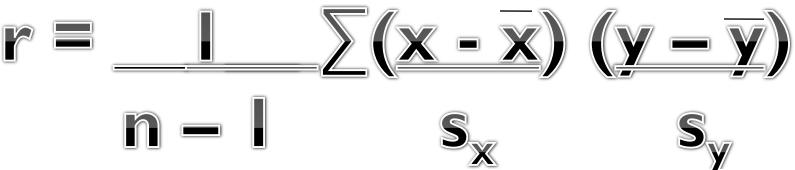

Scatterplots

- Explanatory (predictor) variable goes on the x-axis
- Response variable (the variable you hope to predict or explain) on the y-axis


When analyzing a scatterplot, discuss...Direction

When analyzing a scatterplot, discuss...Strength




Note:

- Association does NOT imply causation
- Causation can only by assessed through a randomized, controlled experiment

Correlation Coefficient (r)

Facts about the correlation coef.

- No units
- Quantitative variables
- Sign indicates direction of association
- Between -I and I
- Linear only; NO CURVES
- Not resistant to outliers
- Not affected by changes in scale or center
- NO CAUSATION

Session 3 • GATHERING DATA

Understanding Randomness

- A random event is one whose outcome we can't predict
- BUT...long-run predictability is helpful
 - Example: We can't predict whether a flipped coin will land on heads or tails, but we CAN predict that in the long run, the percentage of each will be about 50%.

Performing a Simulation

- See handout
 - I. Identify the trial to be repeated
 - 2. State how you'll model the random occurrence of an outcome
 - 3. Explain how you will simulate the trial
 - 4. Define the response variable
 - 5. Run several trials
 - 6. Summarize the result across the trials
 - 7. Describe what your simulation shows
 - 8. Draw conclusions about the real world

Random Number Table Note

- Mark the table so that your method can be followed by the reader
- Indicate the response variable (yes or no) for each trial

Terminology of Sampling

- Population
 - The entire group of individuals
- Sample
 - A smaller group of individuals selected from the population
- Sampling frame
 - A list of individuals from the population of interest from which the sample is drawn
 - For example, population = high school students, but our sample comes from private schools, then our sampling frame does not represent the population

Terminology of Sampling

- Census
 - A sample that consists of the entire population
- Sampling Variability
 - The natural tendency of randomly-drawn samples to differ

Terminology of Sampling

- Parameter
 - A number that characterizes some aspect of the population
- Statistic

Value calculated for sample data

Name	Parameter	Statistic
Mean	μ	x
Standard Deviation	σ	S
Correlation	ρ	r
Regression Coefficient (slope)	в	b
Proportion	Р	P

- Sample size
 - The number of individuals selected from our sampling frame
- Probability Sample
 - Chosen using a random mechanism in such a way that each individual has the same chance of being selected
- Random Sample
 - Chosen using a random mechanism in such a way that the probability of each sample being selected can be computed (with or without replacement)

- Simple Random Sample (SRS)
 - A random sample chosen without replacement so that in an SRS of size n, an individual could be selected only once for that sample

- Stratified Random Sample
 - The population is divided into strata (homogeneous groups) before simple random sampling is applied
 - Example: A tv station wants information from its viewers about events they are likely to watch during the Olympics. The stations suspects that there will be a difference between responses from men and women. They stratify by gender to help reduce variation.

- Cluster Sample
 - The population exists in readily-defined heterogeneous clusters (groups). The sample is an SRS of the clusters.
 - A large school wants to sample 9th grade students about summer reading requirements. Students are assigned to homerooms alphabetically. A random sample of 9th grade homerooms is selected, with all students in each selected classroom participating.

- Systematic Sampling
 - A sample is selected according to a predetermined scheme. (Note: This never produces a simple random sample.)
 - When there is reason to believe that order of the list is not associated with the responses sought, this method gives a representative sample.
 - List seniors alphabetically. Choose every 10th student, starting with a randomly selected number.

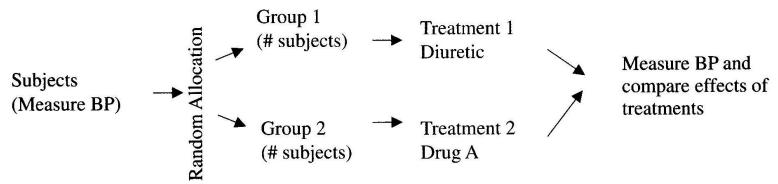
- Multistage Sampling
 - May combine several methods of sampling
 - Produces a final sample in stages, each sample taken from the one before
 - Does NOT produce an SRS

- Convenience
 - Sampling individuals who are conveniently available.
 - Does not produce an SRS
 - Not likely to represent the population
 - Likely to cause bias

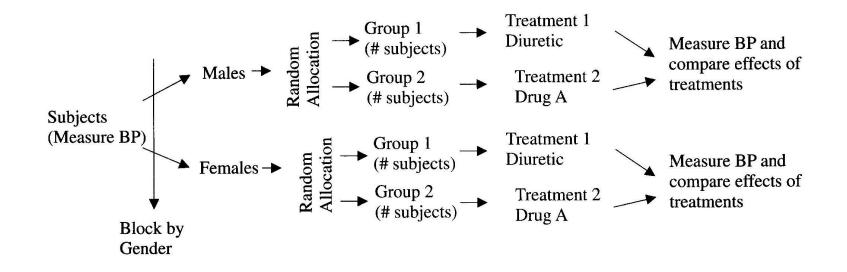
Sources of Bias

- Undercoverage
- Response bias
- Nonresponse bias
- Voluntary response bias (self-selected surveys)

Observational Study vs. Randomized Comparative Experiment


- Observational study
 - Researchers observe individuals, record variables, but NO TREATMENT IS IMPOSED
 - You CAN NOT prove cause-and-effect from an observational study

Observational Study vs. Randomized Comparative Experiment


- Experiment
 - Treatment is imposed
 - Can determine cause-and-effect relationship
 - Explanatory variable
 - Response variable

Completely randomized Experiment

Block Design

- Matched-Pairs Design
 - A form of block design
 - One Subject
 - One subject receives both treatments
 - Note: Randomize the order of the treatment
 - Example: One person works a puzzle while listening to classical music, then works a similar puzzle while listening to rock music. Randomize which music is played first to rule out improvement from experience.

- Matched-Pairs Design
 - A form of block design
 - Two subjects
 - Two subjects with common characteristics are paired
 - One subject receives one treatment, the other receives the other treatment
 - Example: Marathon runners are matched by weight, build, and running times. One wears a new running shoe, the other wears the old shoe. Difference is then compared.

Principles of Experimental Design

- I. Control
 - Reduce variability by controlling sources of variation
- 2. Randomize
 - Randomization to treatment groups reduces bias cause by lurking variables
- 3. Replicate
 - Include many subjects
 - Others should be able to reproduce the experiment
- 4. Block

Other Considerations

- Blinding
 - Single-Blind
 - Subjects don't know which treatment group they have been assigned to, OR
 - Evaluators don't know how subjects have been allocated to treatment groups
 - Double-Blind
 - Neither the subjects nor the evaluators know how the subjects have been allocated to treatment groups

Other Considerations

- Confounding
 - This occurs when we can't separate the effects of a treatment (explanatory variable) from the effects of other influences (confounding variables)

Other Considerations

- Statistical Significance
 - When an observed difference is too large for us to believe that it is likely to have occurred by chance

Placebo Effect

- The tendency in humans to show a response whenever they think a treatment is in effect.
- Use a control group to contradict this tendency.